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ABSTRACT

A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting

multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equa-

tions. Model problems based on the convection, diffusion and Burger's equation are used to illustrate

the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to

the smoothing factor derived from conventional yon Neumann analysis. For the Euler equations,

bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Ei-

genvalue and Combination splits, and two central difference based factorizations, namely LU and

ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods

are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference

scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analy-

sis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid

aspect ratio and flow skewness are examined. Both predictions are compared with practical multi-

grid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming

central scheme.



1. Introduction

Multiple grids were fin'st proposed in the form of two-grid level schemes to accelerate the conver-

gence of iterative procedures by researchers like Federenko [1]. Full multiple grid methods were

laterintroduced by Federenko [2] to solve the Poisson equation and the approach was generalized by

Bakhalov [3] to any second-order elliptic operator with continuous coefficients. According to Stu-

ben and Trottenberg [4], Hackbush in [5] also independently developed some fundamental elements

of the multigrid method. Perhaps the most influential work on the application of multigrid methods

to elliptic type problems is that of Brandt [6] who also proposed the use of local mode analysis to

determine the smoothing rate of multigrid schemes.

In local mode analysis, the spectral radius of a particular relaxation technique computed over only

the high-frequency modes is used as a measure of the relaxation's effectiveness in a multigrid

scheme since, in this case, the role of relaxation is not to reduce the total error but to smoothen it out

i.e. remove the high-frequency components. It is assumed that the high-frequency modes have short

wavelength that are spatially decoupled and that all high-frequency waves are completely 'killed'

on the free grid and axe not visible to the coarse grids. This, however, is not always the case since the

inter-grid processes also influence the convergence rate. Brandt [7] presented theoretical consider-

ations for including the transfer processes in the local mode analysis in what is called the bi-grid

method. Also, some theoretical background is given by Stuben and Trottenberg [4] on how to com-

pute a more realistic amplification factor for multigrid methods based on the bi-grid analysis, where

some convergence norms were computed for the Poisson and Helmholz equations.

A number of works exist where the smoothing factor has been used to predict multigrid performance

in practice. However, the bi-grid analysis is becoming more attractive because of its better accuracy

and reliability, van Asselt [8] used the bi-grid analysis to determine the proper amount of artificial

viscosity to add at different level of coarse grids in a multigrid application. Mulder [9], [10] has also

used the bi-grid method to construct an effective semi--coarsening in a multigrid method that can

solve the problem of strong alignment which often occurs in convection problems. To select a relax-



ationschemefor amultigrid methodsuitablefor aparallelsolutionof atime--dependentproblem,

HortonandVandewall[11]employedthis techniqueusingtheheatequationastheirmodelproblem.

The causeof thepoor multigrid convergenceratethat is experiencedin high-Reynoldsnumber

flows, wherethecoarsegrid correctionsfail to approximatethefine grid problemwell enoughfor

certaincomponents,hasalsobeeninvestigatedbyBrandtandYavneh[12]usingthebi-grid method.

In aneffort to developaneffectivemultigrid algorithmfor Navier-Stokessolutionsonanunstruc-

turedgrid with O(N) complexity, Morano [13], and Morano and Dervieux [14] have used the bi-

grid analysis on a 1-D model scalar convection equation with periodic boundary conditions. More

recently, Ibraheem and Demuren [15] also presented some convergence norms for the Burger's

equation based on bi-grid analysis.

Implicit numerical schemes are becoming very popular, since they allow large time steps for advanc-

ing the solution of Euler and Navier-Stokes equations to steady state. However, only few works exist

to show the effectiveness of multigrid methods especially when approximate factorization is

introduced. Yoon [ 16] and Caughey [17], for example, used the smoothing factor and scalar convec-

tion equation as a model for the Euler equations to investigate multigrid performance. Anderson et.

al. [18], and Demuren and Ibraheem [19] have also computed the smoothing factors on the actual

coupled Euler equations for some popular approximate factorizations. The latter work investigated

the Navier-Stokes equations as well.

The objective of the present work is to present a procedure for utilizing the bi-grid amplification

factor as a more practical tool for predicting multigrid performance in a range of numerical methods.

Bi-grid analysis, based on the von-Neumann type method, is first presented for 1-D convection and

diffusion model problems, and the linearized Burger's equation. Numerical results from practical

multigrid solution of these problems are compared to both predictions from bi-grid analysis and

smoothing factors derived from the more usual single grid analysis. Both analyses and practical

computations are based on the following different time-stepping methods: Euler forward explicit

scheme, Runge-Kutta multistage scheme, a fully implicit scheme, and the semi-implicit scheme.

The influence of the Peclet number on the convergence characteristics of the different schemes is



investigatedusingtheBurger'sequation.Finally, for morepracticalsituations,multigrid perfor-

manceof variousapproximatefactorizationsfor the3-D EulerandNavier-Stokesequationsareex-

aminedusingthebi-gdd stabilityanalysis.FortheEulerequations,bi-grid analysisispresentedfor

threeupwinddifference-basedfactorizationsandseveralcentraldifference-basedfactorizations.In

theupwindfactorizations,boththeflux-vector splittingmethodsof Steger-WarmingandvanLeer

areconsidered.ThecentralschemesincludetheLowerandUpper(LU) andADI factodzations.The

time-steppingalgorithm for theNavier-Stokesequationsis basedon theBeam-Warmingcentral

differenceschemeonly.Practicalmultigdd solutionsfrom numericalexperimenton theADI meth-

od arealsocomparedto bothpredictionsfrom bi-grid analysisandsmoothingfactors.

2. Bi-grid Analysis

Consider a given differential problem which can be written as:

L{u(x)} =f(x) ;for x in .(2 (1)

where L is a linear operator. A typical 2-level multigrid cycle solution to this problem will involve

the following steps:

(I) pre-relaxation on a fine grid using any technique S1, v 1 times

(2) computation of the defect R

(3) restriction of the defect to the coarser grid

(4) exact solution of the error equation on the coarse grid

(5) prolongation of the error onto and the correction on the f'me grid

(6) post-relaxation on the fine grid using any technique $2, v 2 times

These can be represented for any intermediate solution w, by using usual operators as follows:
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:I) w"+½= _'w"

(2) R = f- LhW"+½

(3) llhtR

(4) v n --- L H t(1HR)

(5) Zhnvn+ w"+½

:6) w n+' = _2(lhvH + wn+b

(2)

Combining these steps, we can write:

w n+l = Sv22[IhHLHllH(f - Lh_XW n) + _twn] (3)

The steady-state solution (u) is not changed by the coarse grid correction scheme, thus

un +' = _2[l_t,L _ 'I_(f - LhS_l'u n) + S_l'u"] (4)

Subtracting (2) from (1) and noting that e"+l = u "+l - w"+I gives:

en+' = _22¢I- I_LHtlHLh)_'e n ¢5)

= SV22KS_I'en

= Me n

K = I- [_LHIIHhLh

M = Sv22(I - I_L_llIHLh),_ll '

where

(6)

Mis the bi-grid amplification matrix and Kis the coarse grid correction matrix. It can be shown [4]

that when linear operators are used for the restriction, IH, and the prolongation, I_ transfer pro-

cesses, the coarse grid correction matrix is not a convergent iteration matrix, i.e.,

o(K) O(I h -i H= -I_IL H I_L h) > 1 (7)

Hence, the f'me grid smoothing steps $1, and $2 are important for a convergent scheme. The spectral

radius of the bi-grid amplification matrix (_max_bg) and its 12 norm can be used to predict the per-

formance of a multigrid method. While the spectral radius measures the asymptotic convergence rate

of the multigrid method, the l 2 norm measures the actual error reduction per iteration. _maxbg is

defined as follows:
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;t,,_ t,g = max[Q[_(e)] } (8)

_(e) is the Fourier representation of the matrix M. A brief comment about e will be in order. Due to

aliasing process, low-frequency modes will couple with the coarse grid Fourier modes and, thus, for

any 01 = {Ox, Oy, Oz} suchthat - _/2 < Ox, Oy, Oz - _r/2 thereexistsacorrespondingsetofhar-

monics up to an integer multiple of 2a. For l-D, 2-D and 3-D problems, we def'me O as the follow-

ing set •

1-D

2-D

3-D

e = {(o_),(ox + _)}

e : {(o.,o,),(o_,o,± .),(o_± .,o,),(o.• .,o, • .)}

e : {(o.,o,,o_),(o.,o,,o_• .),(o.,o,±.,o_),(o.,o,± .,o_• .),
lo.± .,o,,o,),(ox±=,o,,o,± .),(o. ±..o, ±.,o,).
(o.± .,o, • =,o,± -)l

Or more generally,

d-D O = {O',O2,O 3...... O 2_1

(9)

(10)

(where dis the dimensionality of the space, and 01, 0 2, .... O2_ are permuted in a similar manner

with the + signs chosen such that the harmonics lie in the high-frequency range).

Hence, based on the O components and on the number of degrees of freedom of the problem, q,

J_(O) is a 2aq x 2aq matrix. Thus, it is a 2x2 matrix for a 1-D scalar problem and 40x40 matrix for

the Euler or Navier-Stokes equations in 3-D. The Fourier representation for the corresponding op-

erators viz: smoothing factor, fine grid problem, interpolation, restriction and the coarse grid prob-

lem can be constructed as follows [7]:

= (_22' _1') = diag[5(O1),

_h = diag[_(ol) , _(O2) ," .... _(02_]

_-'H = _-'(201)

2,1qx 2_q

2"lqx 2"q
2aq X q

q X 2aq

qXq

(11)



A 1
The difference operator, Ln(20 ), on the coarse grid is only qxq since the coarse grid problem is

solved exactly.

and _ depend on the choice of the smoother and the governing equations, respectively. The transfer

processes, however, are less problem-dependent. Following [7], the Fourier symbol of the pro-

longation operator based on a lth--order polynomial is given by:

d

_h(Om)kt =_kt I-I_1 (c°sOm) m = 1,2 a (12)
i=1

where lp2(_) = (1 + _)/2, lp4(_) = (2 + 3_ - _2)/4, etc. are the 2nd and 4th order interpolation

functions, and c_/a is the Kronecker delta. We restricted our analysis to the 2nd order since it is more

commonly used. The restriction operator is expressed as:

2_/H(om) = 0_/(om)]T, (13)

T* in the above equation represents the conjugate transpose. The restriction operator is often the

adjoint of the prolongation operator in practice. In this study, the corresponding full weighting is

used for the restriction operation for the Euler and Navier-Stokes equations, while simple injection

is employed for the model problems. In the latter case, the Fourier symbol for the restriction operator

is simply unity.

A description of how the Fourier representation ?v_(O) can be constructed is given later for certain

problems.

3.Model Equations

The model equations used in the present study are the conservation equations for the convection of a

scalar, the diffusion of a scalar, and the linearized Burger's equation which is essentially a convec-

tion-diffusion equation. Each of these equations is integrated in time using (i) Euler forward--explic-

it scheme, (i.i) a Runge-Kutta multistage scheme, (iii) a fully implicit scheme and (iv) a

semi-implicit scheme.



The model equations for convection, diffusion, and the linear Burger's equation can be written as"

(convection-diffusion)

convection • ut + CUx = 0

diffusion • ut - vuax = 0

Burger's • u t + UoU x _- VUxx

(14)

In the Burger's equation, uo = constant

lowing non--dimensional form:

is assumed in our analysis. Thus, it can be put in the fol-

ut + Ux = _eUxx (15)

where Pe in the above equation is the Peclet number defined as follows:

Pe = uoD
lJ

(16)

(D is an appropriate length scale)

(i) Euler forward-explicit scheme

The Euler explicit method can be applied to the above equations to yield the following general dis-

crete form:

u7+l = u7 - AtR" (17)

where R n represents the residual expressed as follows:

convection •

diffusion •

Burger's •

R" =_xxiC(u" - u_'_1)
R n = v (u n _

1 A_2" i+t

R" -Exx(U7- "7-1)

2u7+ uL I)
I

Ax2pe(UT+l - 2u7 + un_t)

(18)

Space discretization in the above formulations is based on first-order upwind differences for con-

vection, second-order central differences for diffusion, and the corresponding combination in the

Burger's equation. First-order upwind differencing of the convective flux introduces inaccuracy

due to too muchnumerical diffusion Which may be of flae sameorder of the natural diffusion in the

Burger's equation. If second-order central differencing is used for the convective flux, a second--or-



deraccurateschemecanbeobtainedbutwith severe limitations on the Peclet number due to disper-

sion errors. Although the addition of artificial viscosity could dampen the high-frequency

oscillations at high Peclet numbers, it is highly problem dependent. A better approach to achieve a

second--order accuracy while sustaining a smooth solution at the vicinity of shock or high gradients

is to discretize the convective flux using higher--order upwind schemes, preferably in conjunction

with some limiter. Hence, with a third--order discretization of the convective flux, a second--order

accurate scheme for the Burger's equation can be obtained with R n given by:

R" l__L_(u.- u7__)- -_x (UT+_- 3u7 + 3u7__ - u7 2)--" 2ZIX i+1

l_. ¢u n _ 2u n+ n t)
Ax2pe, i+ 1 ui-

(]9)

(ii) Runge-Kutta Multistage scheme

With each of the above schemes integrated in time using the Euler forward explicit method, the time

step was limited to a small range by stability considerations, thus making it inefficient for steady-

state computations. A Runge-Kutta (ILK) method was introduced by Jameson et. al. [18] to permit

larger time steps to be taken. For an m-stage scheme, the time integration can be written as follows:

k = 1,m (20)

u° = u7
k o _ akdtRk-1U i _- U i

UT+ I = U?

Note that with m =

sometime called RK1. Coefficients Ct k

faster convergence.

1, the ILK scheme reduces to the Euler forward explicit scheme and hence is

are optimized such that larger time steps can be used for

a 1 =. 25,a 2 --. 3333,a 3 =. 5,a 4

a 1 =. 11,a 2 =. 2766,a 3 =. 5,a 4

a 3 =. 4265,a 4 - 1 ).

= 1), and the optimized coefficients of Lallemand (RK4-L,

= 1) and van Leer (RK4-VL, a x =. 0833,a 2 =. 2069,

Three different sets of coefficients for a 4-stage Runge-Kutta scheme are investigated in this study,

in line with the earlier work of Morano [16]. These are the standard coefficients (RK4-S,



(iii) Implicit scheme

An implicit time integration scheme in delta form can easily be formulated for each of our model

problems. For example, the corresponding implicit formulation for the Burger's equation with first-

order accuracy is written as follows:

Rn = _x(U n _ un_l) 1 (un+ _ 2u n + un 1) (21)A_Pe 1

Au 7 ._ un+l _ U7

fl in the above formulation is called the implicitness factor, fl = 1.0 gives a fully implicit scheme.

(iv) Semi-implicit scheme

If/3 -- 0.5 in equation (21) above we have a semi-implicit scheme. This reduces to the Crank-Ni-

colson scheme if the overall spatial differencing is second-order accurate.

Fourier Symbols

A

For illustration, the hi-grid amplification matrix M(O) is constructed for the convection problem

using the Euler-forward explicit scheme for the smoother:

Consider the discrete form of the operator L and let the step--by-step solution be characterized by

Fourier modes (with periodic boundary conditions)

un = uoAneOJi (22)

Then each of the operators that forms matrix ?d(O) becomes:

10



where

_(Om) = (1- A_)+ --_x[COS(Om)-lsin(O")]

_h(Om) = -- _x [1 -- COS(O m) + I sin(Ore)]

_go') = 1[1 + COS(Om)]

IA'ht_(O") = 1 for injection

L_ = 1 - cos(201) + Isin(20 l)
x

01 = Ox and _92 _ Ox +

m 1,2

(23)

Thus, from Eq. (8)/_(O) can be written as:

d(e) L° s(e=)..I LK`' K= Lo _(o_)1

K,,= _- _(e,)_(o,)£.(e,)/&

K.,= - _.(e.)$(e,g.(o,)/z:.

(24)

A

Note that L H is evaluated only at the fundamental frequency, hence it is lxl. The result obtained

above is similar to that derived by Morano [16], although our presentation is more general and is

more easily extended to multi-dimensions.

Multigrid Implementation

A simple two-level multigrid (V cycle) method was implemented to test the relative accuracy of the

bi-grid amplification factor and the smoothing factor in predicting multigrid performance. The

two-level algorithm consists of the steps given in section 2 and is re,cursively expressible as follows:

11



Proc Multigrid

[/f (k = 1)
eimer

(u n, u n + 1, R n, k)

U n+l = LHIR n

or u n+l -- S**u n

else
un+ l _.. Slu n

.-- i <e - Cu )
Multigrid (0, u H, R n, k - 1)

Un+l 4,-- Un+l q- I_lu H

ench'f}

(25)

In the above, L and S stand for the discrete operator and relaxation scheme corresponding to each of

the model equations and numerical schemes discussed in previous sections. For this two-level V

cycle multigrid implementation, the exact solution of the residual equation is employed. Only one

pre-relaxation with no post-relaxation is performed on the free grid.

Local Relaxation

Bi-grid analysis is exact for problems with periodic boundary conditions since it is based on the

Fourier method. However, the asymptotic convergence rate for certain multigrid solutions deterio-

rates from the bi-grid prediction due to singularities such as disconlinuity in material and/or solu-

tions, and also due to the type and coefficients of the boundary conditions. Poor multigrid

performance results since such singularities lead to too large a correction from the coarse grids in the

localized region. To improve the performance of a multigrid solution, further relaxation can be per-

formed on fine grid in the region of the singularities after applying the coarse grid correction. This

local Relaxation is, infact, an extra post-relaxation but confined to only certain nodal points and car-

tied out a few number of times. The extra computational work is negligible if only a few partial

sweeps is involved. The convection dominated problems subject to Dirichlet boundary conditions

that ate considered here undergo high changes in gradient in order to satisfy the exit boundary condi-

tions. Therefore, multigrid performance in these problems deviates from the results predicted by bi-

grid. However, a few passes on fine grid over the boundary conditions and over the interior equation

in some small neighborhood of the boundary (about 3 nodal points at the exit) is found sufficient to

improve multigrid performance to the exact value predicted by bi-grid analysis.

12



Numerical Experiments

Bi-grid amplification factor ('_'max_bg), the smoothing factor ( _t,__sg ) and the practical asymptotic

convergence rate ( Qmg ) of the multigrid scheme were obtained for the following test problems:

(1) Convection problem with periodic boundary conditions, viz.:

u(0, t) = u(1, t) ; u(x, O) = sin 2._x

(2) Convection problem with Dirichlet boundary conditions, viz.:

u(0, t) = 1 , u(1, t) = 0 for t>O ; u(x, O) = sin 2.ztx

(26)

(27)

(3) Diffusion problem with similar Dirichlet boundary conditions as in (2) above

(4) Burger's equation with similar Dirichlet boundary conditions as in (2) above.

The bi-grid amplification factor is obtained from Eq. (8) and the smoothing factor is obtained from

the usual single grid amplification factor over the high frequency range _/2 _< O 1 < _t as

= max{o[_(O1)] }. In each case, sixteen Fourier modes are selected, and the associated ei-;t/,jg

genvalues are solved for using linear algebra routines such as found in the IMSL library. The asymp-

totic convergence rate of the multigrid experiments, on the other hand, is computed from [19]:

Qmg

1

\llRnaII]
(28)

wherell R IIand IIR"2IIarethe 12 norm of the residuals at time levels nl and n2, respectively.

The pseudotime A t to advance the convection and the diffusion problems to steady state is com-

puted from CFL = "_x and d = A t respectively. CFL is the Courant-Friedrichs-Lewy num-Pedx 2'

ber and d is the diffusion number. For the Burger's equation, At is computed from:

At = min(trAx , trAx2Pe) (29)

13



where cr is an appropriate parameter chosen to reduce to the diffusion number dat low Pe number

and to the CFL number at high Pe number. This choice ensures that the appropriate time step is used

in each flow regime. Ax is computed from 19/20. Preliminary tests showed that the same results are

obtained with 40 or 80 points.

The exact steady-state solution for the Burger's equation, subject to the boundary condition type

discussed above, is given by:

u "- u(0, t) 1 - exp(- Pe) (30)

It is valid for all range of Pe considered in this study.

Results for the Model Equations

Figures 1 and 2 show results of the analyses of the 1-D convection equation using the Euler forward

explicit scheme. The model problem of Fig. 1 has periodic boundary conditions whereas that of Fig.

2 has Dirichlet boundary conditions. The bi-grid analysis gives perfect prediction of practical multi-

grid performance in the former, whereas the smoothing factors from the single grid analysis are

much too high. Both methods of analysis ignore boundary effects, so the same predictions are ob-

tained in Figs. 1 and 2, and the analyses predictions are strictly correct only for problems with period-

ic boundary conditions. This is confirmed in Fig. 2(b) where the asymptotic multigrid convergence

rate is now much worse than predicted by the bi-grid analysis. The reason for the degradation of the

multigrid performance is the singularity which appears near the exit in Fig. 2(a). This degradation in

performance could be cured with a few local relaxation sweeps [15], as shown in Fig. 2(c). Each

sweep had marginal computational cost and 5 sweeps were sufficient to bring the multigrid perfor-

mance for the Dirichlet problem in line with that with periodic boundary conditions and the predic-

tion of the bi-grid analysis. Clearly the Euler forward explicit scheme does not have good

convergence properties except for CFL numbers close to 0.5, and it is divergent for CFL numbers

greater than 1. Better convergence properties are achieved with Runge-Kutta (RK) schemes. Three

4--stage RK schemes were analyzed, and the results are shown in Fig. 3 for the 1-D convection prob-

14



Iem with periodic boundary conditions. With optimized coefficients Fig. 3(c), convergence could be

obtained for CFL numbers up to 3. Further, bi-grid amplification factors below 0.4 are obtained for

the range of CFL numbers from 0.5 to 2.5. There is also perfect agreement between the results of the

bi-grid analysis and the practical multigrid convergence rates. Similar multigrid results were ob-

tained by Morano [16]. Fig. 4 shows the result for the Dirichlet boundary conditions. In this case the

multigrid convergence rates at higher CFL numbers are much better than predicted by either method.

Clearly, the boundary effects are stronger with the RK scheme and there is no simple way to account

for them in the analyses. Figure 5 shows results for a fully implicit scheme and for the semi-implicit

Crank Nicolson scheme, for the 1-D convection equation. Although both schemes are stable for the

whole range of CFL numbers, the Crank Nicolson scheme suffers from very poor convergence rate at

high CFL numbers.

Results for the 1-D diffusion equation are presented in Figs. 6-8. Dirichlet boundary conditions are

applied throughout, and the steady state solution is shown in Fig. 6(a). In each case, the bi-grid anal-

ysis gives perfect agreement with the multigrid convergence rate whereas the smoothing rate ob-

tained from the single grid analysis is consistently too optimistic. On the whole, the predicted

convergence rates for each method are similar to corresponding one obtained from the convection

equation if the diffusion number, dis replaced by the CFL number in the latter. Clearly, if the goal is

to achieve rapid convergence to the steady state, the fully implicit scheme with high d or CFL num-

ber is the obvious choice.

The linearized Burger's equation represents a mixed convection-diffusion problem. The whole

range of model type from pure diffusion to pure convection can be obtained simply by varying the

Peclet number from a very small value to a very large value. Computed results for 4 values of Pe

(10 "4, 20, 100, 106) are presented in Figs. 9-12, for the various discretization schemes considered

here. The exact solution at the steady state is shown in Fig. 9(a), for the Dirichlet boundary condi-

tions u(0,t) = 1, u(1,t) = 0. For high values of Pc, there is a singularity near x=l. As explained in

section 6 local relaxation is performed to reduce the adverse effect of this singularity on the overall

multigrid convergence rate. The results for the first- and second-order Euler time explicit schemes

15



arepresentedin Figs. 9 and 10. In each case the bi-grid analysis gives quite good prediction of the

multigrid convergence rate. On the other hand, single-grid analysis gives too optimistic estimates at

low Pe and too pessimistic estimates at high Pe. The second-order scheme shows much poorer con-

vergence rates, especially at high Pe. The results for the fully-implicit and semi-implicit schemes

ate presented in Figs. 11 and 12. The superiority of the fully-implicit scheme is confh'med, especial-

ly for high Pe flows. For tr (or CFL number) greater than 10, it is close to a direct solver

with 2 _ 0. In these cases too, the bi-grid analysis agrees quite well with the practical multigrid

convergence rate, except near tr = 1 in the semi-implicit scheme at high Pc. Because of the lim-

ited range of tr where the convergence rate is much less that 1, the semi-implicit Crank Nicolson

scheme is not a viable method for obtaining steady solutions for the model problem. If the main inter-

est is rapid convergence to steady state, then the fully-implicit scheme at high values of a (or CFL

number) will be optimum.

Presently bi-grid stability analysis has been presented for typical explicit and implicit solution

methods for model problems which range from the diffusion equation to the convection equation and

including the convection--diffusion equation at different Peclet numbers. For large scale practical

computations, interest is really in solving the system of ELder or Navier-Stokes equations. In the

following sections, the bi-grid stability analysis of fully-implicit schemes of Euler and Navier-

Stokes equations are examined under various approximate factorization methods.

4.Euler and Navier--Stokes Equations

In order to extend the bi-grid analysis to the coupled equations of fluid flows, a discrete analog of

these equations is formulated based on different approximate factorizations. The ADI factorization

is formulated for the Navier-Stokes equations with the Euler equations as a degenerate case. Three

different upwind factorizations and one central LU factorization formulated in [19] are, also, consid-

ered.

The 3--D Navier-Stokes equations in Cartesian coordinates can be written as
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aQ + O(E- Ev) c3(F- Fv) O(G - Gv) 0
0-'[ Ox + Oy + dz =

(31)

where Q is the solution vector and E, F, G are the conserved inviscid fluxes:

Q = [o, 0u, ov, 0w, 0e] r

E = [Ou, Ou 2 + p, Our, Ouw, (oe + p)u] r

F = [Qv, Ovu, Qv2 + p, Qvw, (Qe + p)v] r

G ---- [Üw, Qwtt, QWV, Ow 2 "1- p, (ee + p)w] r

(32)

The viscous fluxes Ev, Fv, Gv are:

Ev = [0, 21_(2ux- Vy- Wz), l.t(uy + vx), /.t(uz + wx),

ltv(uy + Vx) + _w(uz + wx) + 21.tu(2ux - vy - Wz.) + kTx] r

+ + +w,)+ v,- ÷

(33)

In above, T = p/[Ocv(Y - 1)], and p = (y - 1)[0e - 0.5(u z + v 2 + w2)]. Also, Stokes hy-

pothesis (:t = - (2/3)/a) has been assumed. With Ev, Fv, Gv set to zero, we recover the Euler equa-

tions.

Using the Beam-Warming scheme, the viscous fluxes are split directionally [20]. Following the ap-

proach presented in Anderson et al. [21] for 2-D Navier-Stokes equations, analysis yields the fol-

lowing ADI approximate factorization for the 3-I) Navier-Stokes equations. Here, Euler time

integration and constant fluid properties are assumed.

[I+ At(d_A - 6=R)][I + At(b_B - 6nS)][I+ At(dzC - 6=Y)]AQ = (34)

- ,at[A_,- R_,,,- R:,,- R¢_,+ _,5,- S:,,,- S_,,- S:,,+ C,_,- r:_ - r¢,_- r_=]O
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where the Iacobians A, B, C are aE/aQ, aF/aQ, OG/OQ, respectively. The analytical expression

for the viscous fluxes are given in Demuren and Ibraheem [19]. The fight-hand side resulted from
-- L

linearization and from assuming the flux Jacobians to be locally constant. To damp the high-fre-

quency waves that will arise due to central differencing, second-order implicit

(D_ = - eed tdx6xJ and fourth--order explicit (Dxe = - ted tAx36xm) artificial dissipations are

added as diagonal matrix coefficients in the numerical examples. Thus, with similar dissipations

added in the y and z directions Eq. (34) becomes

[I+/It(_xA - _=R - _id:uJ=)][I+ At(_/_ - _r_S- _dy_.)][I + At(_zC --6=[- tflz_..)]dQ

= - At[A6,, - R6xx - R16yx - R26z.x + B6y - S16_y - S6yy - Sz6zy (35)

+ C_z - Y16_z - Yz6yz - Y6zz + e,(Ax36=x_ + Ay36yyyy + Az36z=z)]Q

The corresponding factorization for the Euler equations becomes apparent if the viscous flux Jaco-

bians R, R t, R 2, S, S t, S 2, Y, Yt, Y2 are set to zero.

Other approximate factorizations that are considered in this work are those formulated for Euler

equations in [18] and [19], viz:

[I + d t(6,_-A +

[I + At(6_A +

[I + A t(6xA +

+ 6+A-)][I + At(6:B + + 6:B-)][I + At(6;C + + 6+C-)]AQ = -AiR n (36)

+ 6_,-B+ + 6_-C+)][I+ At(6+A - + 6:B- + 6+C-)]zlQ = - AtR n (37)

+ 6,+a- + +  t(6:B + + + 6+c-)]Ao. = -/1tR" (38)

where R" = 6/E + + 6+E- + _TF + + 6y+F - + 6z-G + + 6+G -

[1+ At(6zA 1 + 67B t + 6z-'C l) + x2dt(6_" + 6_" + 6z--)]

X [I +/I/(6+A2 + (}?S 2 + 6+C2) - _¢2tJt(6x + + 6: + 6+)]

= - At(dxE + dyF + 6,G)- x4zJt(dx3dx_x + zly'6yyyy + zlz'dzz=)

(39)

(40)
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Eqs. (36),(37) and (38) are upwind schemes, and are referred to as spatial, eigenvalue and combina-

tion factorizations, respectively. The flux-vector splitting methods of Steger-Warming [22] and van

Leer [23] are assumed. Eq. (40) is the Lower and Upper (LU) factorization. Here, the fluxes devised

by Jameson and Turkel [24], viz: A 1 = (A + IAI)/2 and A 2 = (A - IA1)/2, are used to achieve

diagonal dominance. _ + and 6 - denotes forward and backward difference operators, respective-

ly, and g 2 and x 4 are the artificial dissipation coefficients.

Fourier Symbols

The bi-grid amplification matrix/¢_(O) is constructed from M = S_22(I- l_Lff llnLh)S_l _. For

ease of presentation, the Euler equations alone are selected for illustration, with the ADI central

scheme used as the smoother. In this case, viscousfluxesR, R1, R2, S, S l, S 2,

to zero. The components operators of matrix _(O) are:

A

(i) The fine/coarse grid Operator L

The Euler equivalent form of Eq. (31) is:

aQ (aE aF aO)O'-'i"= - "_ + "_ + "_ + dissipation

Thus, in quasi-linear form:

( #Q aQ) [Axa2Q AyOfq+AzO__21L(Q)= - a_x + B_-f + C--_ + ei_ _x 2 + oy- oz ]

Y, Yx, II2 areset

(41)

(42)

Holding A, B, Clocally constant and employing second-order central differencing, the Fourier sym-

bol of the fine grid problem on equal mesh size in all directions becomes:

^ 2e i
Lh(O m) ---- --_x[A sin(O1 m) + Bsin(O_ + Csin(O_] + _--_[cos(O_ + cos(O_ + cos(O_- 3]

sin4 + sin4 + sin4 re=l,8 (43)
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Note that O_ represent the/dh element of the O m component (see Eq. (9-11)).

For any arbitrary mode, Eq. (43) is a 40 X 40 matrix since each Jacobian is a 5x5 matrix and there are

8 harmonics including the fundamental mode. The coarse grid problem is assumed to be a version of

the original problem on the free grid and the coarse grid is formed simply by deleting every other fine

grid point. Thus, the mesh size and Fourier modes are { 2,dx, 201 } and its Fourier signature can be

written as:

A

Ln(20 l) = Ix[Asin(20 0 + Bsin(20y) + Csin(20z)] + _x[COS(20x) + cos(20y)

+ cos(20z)- 3]- _(sin40x + sin40y + sin40z)
(44)

In the above equation, only the fundamental mode, 0 1 = {Ox, Oy, Oz}, is employed since the coarse

grid problem is assumed to be solved exactly. Hence, this is only a 5 X 5 matrix.

(ii) The relaxation Operator

Each of the equations (35), (36), (37), (38) and (40) can be expressed as

NAQn = _ L ffi - AtR n (45)

von Neumann stability analysis is used on this system of linear equations by letting the step-by-step

solution be characterized by

Qn = uo2 nenO etJO,eltO (46)

where 2 is the single grid amplification factor. Thus, Eq. (45) reduces to a complex generalized ei-

genvalue problem of the form

A ^ A A A

Kx = ,_Nx where K = N- L (47)

The Fourier symbols of/_and _,, for our particular example, can easily be shown to be
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N(O m) = I + A/sin(O_ + 4_/sin 2 I +_-_

(48)

_(0 m) = -___Atl[Asin(O_ + B sin(Oz m) + C sin(O3m)) +
16Atte

Ax (sin, o.+ sin4-T_ + sin a (49)

The Fourier symbols corresponding to the other approximate factorizations are documented in De-

muren and Ibraheem [25]. For each harmonic, 0 m (m = 1, 8), Eq. (47) is solved to give five eigen-

values from which the elements of 3(0) are constructed. For example, if the eigenvalues

corresponding to the mode 01 = {Ox, Oy, Oz} are A = {:tl,22,23,A4,25}, then, from Eq. (11),

3(01) = AI. The effective fine grid smoothing operation is obtained by raising the smoothing ma-

trices to the power of v 1 and v 2, the pre- and post-smoothing counts, respectively.

(iii) The Transfer Operators _h and l_h

For a second-order interpolation, the Fourier symbol of the prolongation operator, from Eq. (12), is:

_(9 m) ffi-_[1+ COS(Olin)][1 + COS(O_][1 + COS(O_]
(50)

The restriction operator, _hH, is computed from this equation and Eq. (13) assuming full-weighing.

Based on theabove operators,3_(O) isassembled from M = SV22(I- IhHLH 11HhLh)_'.A symbolic

form isgiveninAppendix A. Itisan 8x8 blockmatrixofwhich each elementalblock isa5x5 matrix.

Solution Procedure

The eigenvalues for the bi-grid matrix/1_(O) are computed from Eq. (8) over fixed Fourier modes

to obtain the amplification factor. Sixteen modes are selected, in the range - _r/2 < O 1 -< _/2.

The smoothing factor is also computed from the generalized eigenvalue problem (47) over only the

high-frequency modes _z/4 < IO11 < _r/2 as 2_jg - max(L_l). In each case, the eigenvalues are
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solved for using the linear algebra routines such as found in the IMSL library. Uniform flow is as-

sumed with M** = 0.8, zero yaw (ay) and angle of attack (aa), andy = 1.4. Further, the grid

spacing is assumed to be uniform in all directions. Effects of aspect ratio and flow skewness are also

investigated. The time-step and Reynolds number are calculated from

At = CFL (51)

,ax + _ + _ + c + + "A':z_

Re = OIVl(v/Ax2 + Ay2 + Az2) (52)
lu

Some other pertinent definitions used are as follows:

IVlffi _/u2+v 2+w 2 M® I_, =T , v=utan(ay) , w=utan(ao) (53)

Practical multigrid solutions are obtained for Euler and Viscous flows around a circular cylinder us-

ing the PROTEUS computer code developed at NASA Lewis Research Center. The FAS---FMG (full

approximate storage-full Multigrid) algorithm applicable to non-linear systems of equations was

implemented in the PROTEUS code [26]. Based on two levels, the asymptotic convergence rate of

these flows were computed from Eq. (28). The Reynolds number based on the cylinder diameter is

20 and the Mach number is 0.2. The grid size for the Euler flow is 25x49 and for the Viscous flow is

49x49. In each case, the grid was clustered such that the aspect ratio varied from 1.5 to 3.8 for the

Euler flow and 0.5 to 12.2 for the Viscous flow. Further, the pre- and post-smoothing counts are 1

and 0, respectively, as are assumed in the analyses too.

Results for the Euler and Navier-Stokes Equations

Figure 13 shows the convergence results for the 3-D Euler equations using the upwind schemes. The

computed values for the smoothing factor (2_,_ss) and bi-grid amplification factor (2max..bg)for the

spatial, eigenvalue andcombination factorizations based on the Steger-Warming flux-vector split-

ting are shown in figures 13(a), 13(b) and 13(c), respectively. Both factors predict instability for the

spatial split, especially for CFL number beyond 5.0. In the eigenvalue and combination factofiza-
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tions, better convergence characteristics are observed although the smoothing factor's prediction is

slightly more optimistic. For these two factorizations, bi-grid analysis predicts near instability at

CFL number above 25 whereas the smoothing factor predicts unconditional stability for all CFL

numbers. Figures 13(d)-13(f) show predictions for multigrid performance of each factorization us-

ing the van Leer flux-vector splitting. Except for the spatial factorization, all the schemes are pre-

dicted unconditionally stable for all CFL numbers by both bi-grid and smoothing factors. The

spatial factorization is stable only for CFL numbers below 12 and possesses better convergence char-

acteristics at CFL number below 8 than the other two factorizations. From both analyses, i.e. from

(_t_..sg) and (2maxbs)_ van Leer flux-vector splitting gives better convergence characteristics than

the Steger-Warming method for multigrid procedures. It is observed that the present results of the

smoothing factors for the van Leer method are similar to those presented by Anderson et. al.[ 18], and

Demuren and Ibraheem [19].

Results for the 3-D Euler equations using the LU approximate factorization with central difference

approximation and various levels of second- and fourth-order artificial viscosities, _¢2 and x 4 , are

shown in Figs. 14(a)-14(c). Without the addition of second--order dissipations, i.e. _¢2 "- 0, the co-

efficients x 4 = 0.3 yields the optimal results (see fig. 14(a)). From figures 14(b) and 14(c), bi-

grid and smoothing factors predict that an appropriate combination of x 2 and x 4 (especially when

_4 >-- _¢2) can significantly improve the performance of the LU scheme when used as a relaxation

scheme for multigrid. Also for all levels of dissipation, the smoothing factors estimates are more

optimistic than the bi-grid results especially at lower CFL numbers.

The convergence characteristics for the 3-D Euler and Navier-Stokes equations for different levels

of artificial dissipation and Reynolds numbers are shown in figures 14(d)-14(t) and 15, using the

Beam-Warming (ADI) central difference scheme as the baseline solution algorithm. With no dis-

sipation added to the Euler equations (fig. 14(d)), the bi-grid analysis predicts instability for all CFL

numbers, while the smoothing factor predicts stability for CFL numbers below 15. From figures

14(e) and 14(f), optimal multigrid performance is predicted by the bi-grid analysis for dissipation
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levels of ee -- 0.5 and ei = 1.0. These results are similar to those obtained for the Navier-

Stokes equations at Re=106 (see figs. 15(d)-15(f)). With Reynolds number of 100 and no dissipa-

tion, both bi-grid and smoothing factors predict stability for certain range of CFL numbers although

the latter is more optimistic. Also at this Reynolds number, the optimal dissipation levels are

ee = 0.5 ande i= 1.0.

All computations have been based on zero yaw and angle of attack, and also on uniform grid spacing

in all directions. Sensitivities of convergence characteristics to flow skewness and aspect ratio are

studied using the ADI central scheme at Reynolds number of 100, and dissipation levels of

ee = 0.5 and e i = 1.0. The results are shown in figures 16 and 17. Generally, convergence char-

acteristics are improved with increases in yaw angle at zero angle of attack although the range of

stable CFL numbers becomes smaller (figs. 16(a)-16(c)). From figures 16(d)-16(f), no significant

difference is observed in the convergence results when the yaw and angle of attack are set equal to

each other. From figure 17, the convergence characteristics become worse with increases in grid as-

pect ratio.

In order to ascertain the suitability of bi-grid and smoothing factors in predicting multigrid perfor-

mance in complex flows, asymptotic convergence rate are computed from practical multigrid solu-

tions of 2-D Euler and viscous flows around a circular cylinder. The steady-state solutions for these

flows are shown in fig. 18(a). Rather than evaluating the corresponding bi-grid and smoothing fac-

tors from uniform flow conditions, as in previous cases, they are computed at each point in the flow

field, thereby accounting for the variation in flow properties. Figs. 18(b) and 18(c) show estimates

from both analyses based on the computed frozen coefficients of the Euler and viscous flows, respec-

tively. These results are also summarized in Table I, and are compared with the asymptotic conver-

gence rate measured from the practical multigrid computations. For both flow problems, smoothing

factor deviates more from the practical solution than does the bi-grid factor.
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Coneludlng Remarks

Bi-grid stability analysis has been presented for typical explicit and implicit solution methods for

model problems which range from the diffusion equation to the convection equation and including

the convection--diffusion equation at different Peclet numbers. Bi-grid amplification factors were

compared with smoothing factors and multigrid convergence rates. The predicted bi-grid amplifica-

tion factors agree quite well with the asymptotic convergence rate of the multigrid method. The

smoothing rate of the relaxation scheme obtained from a local mode analysis on a single grid is not an

accurate predictor of the multigrid convergence rate. For multigrid performance in large scale practi-

cal computations, bi-grid amplification factor and smoothing factor were computed from the system

of 3-D Euler and Navier-Stokes equations. Various approximate factorization methods that are pop-

ular in practice are considered. In typical practical multigrid solutions of 2-D Euler and viscous flow

problems, bi-grid analysis is found to give a better prediction of the convergence rate than the

smoothing factor obtained from a single grid analysis.
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TABLE I: Convergence characteristics of 2-D Euler and Viscous flows around a cylinder

Euler Viscous flow

CFL

0.5

_tt-$g '_max..bg Qmg 21a_sg 2max..bg Q mg

0.88 0.99

1.0 0.80 0.92 0.98 0.91 0.94 0.98

2.0 0.76 0.91 0.96 0.85 0.93 0.96

4.0 0.81 0.93 0.77 0.92 0.94

6.0 0.84

0.94

0.90

0.90

0.99

0.92

0.95

0.76

0.96

0.91 0.93

8.0

10.0

12.0

0.87

0.89

0.91

0.90

0.90

0.90

0.92

0.94

0.95

0.81

0.84

0.87

0.91

0.91

0.91

0.92

0.92

0.92

30



APPENDIX A

The Bi-grid Amplification Matrix _(e)

m

Mn Mr2 M13 MI4 M1s Ml6 Ml7 Mn

M21 M22 M23 Mu M2s M2e M27 M2s

M31 M32 M33 M34 M35 M36 M37 M_

M41 M42 M43 M44 M45 M4e M47 Mrs

Msl Ms2 M53 M54 Mss /]456Ms_ Ms8

Met Me2 /1463M64 Mes M_ M_ M_

MT1 M72 M73 /]474 M75 M76 M77 MTs

Ms1 Ms2 Ms3 Ms4 Ms5 Ms6 M_7 Mu

The diagonal elements are:

and the off-diagonal elements are:

where, for example,

M,4= - ?,,(o,)._.(e"g,,(o"_,(o')_:(e'gf,'
M_,ffi - _.(O_)._"(O'g,(O')_,(O_=(O'g_'

Each element is a 5x5 matrix corresponding to the 5 dependent variables in equation (31).
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